
Why rewrite fw_update(8)?
Andrew Hewus Fresh afresh1@openbsd.org

https://bsd.network/@AFresh1

The OpenBSD mindset, and how fw_update came into being and evolved to what it is now.
Synopsis:
A trip into the history of L<fw_update(8)>, why it exists, and how OpenBSD prioritizes user experience.
Bio:
Andrew has been using OpenBSD for over 20 years and afresh1@openbsd.org for about ten now and in that time has contributed at least a week worth of
effort to the project. He primary keeps L<perl(1)> up to date in the base system and maintains a few ports to have something to test those perl updates. He
hasn't used OpenBSD professionally since before he got his account, but continually wishes other things were as nice to use. He has also restarted and has
been organizing the BSD Pizza Night in Portland, OR since 2014, shortly after moving there.

Bad User Experience
We had some bad UX

After installing a new laptop, X doesn't start on first boot.

Yuck!

Why am I involved at all?
My main laptop is either my 2011 x220 or maybe a 2013 t440s. So, I didn't really hit it, but it is certainly a thing that new users would hit.
Theo was annoyed that after installing a new laptop he had to reboot before X would start.
But I thought, "how hard could it be?"

Why was this the experience?
Several reasons:

• Manufacturers are cheap.
• OpenBSD cares a lot about licensing.
• Manufacturers have different priorities for licensing than OpenBSD.

Manufacturers figured out they could save money by not including storage
They now make the OS load it onto the device
Does it really save enough money for it to be worth the hassle?
I suppose it's better than when the firmware couldn't be upgraded.
Now they can put distribution licenses on the firmware.
That didn't previously matter, the firmware shipped on a chip on the hardware and very few people thought about it.
Now that it's no longer part of the hardware, for a while people really cared.
Some folks only use 802.11b, Fossy had a special network.
OpenBSD cares a lot about licensing but hardware manufacturers don't.
So we have a conflict.

OpenBSD is a stickler for licenses
$ head -4 src/gnu/README | tail -2 This directory contains software that is Gigantic and Nasty but Unavoidable.

https://www.openbsd.org/policy.html

I got several email from folks patiently explaining that L<perl(1)> doesn't use (only) the GPL and does't belong in src/gnu.
I was glad when we redefined the "GNU" subdirectory.
We have some things that have "unacceptable" licenses in base, but there are some licenses that aren't (CDDL, GPLv3).
Even there there are limits to what can be used, for example, no new GPL licensed code will be included.
OpenBSD has its own WiFi stack.
A lot of firmware has a licence that can be included in OpenBSD's base system, even though it isn't "open source" and the source isn't available. Mostly just
that it can be distributed freely.
Some firmware doesn't have a license that allows distributing as freely as the base system needs though. Fortunately they allow distributing them, and that
firmware is available separately.
Mostly wifi and graphics cards, but Intel chipsets too.

It can get better
rtwn(4) and urtwn(4) got better licenses and moved into base.

Many thanks to kevlo@ for reaching out to Realtek and getting them to remove the patent clause.

L<Old license|https://raw.githubusercontent.com/fuzeman/linux-firmware/fuzeman/master/LICENCE.rtlwifi_firmware.txt>
No more patent clause
L<New License|https://raw.githubusercontent.com/openbsd/src/master/sys/dev/microcode/rtwn/rtwn-license>
L<kevlo commit adding realtek firmware|https://github.com/openbsd/src/commit/2f22c03877562cecfe7a5d75957f3a51d58a0c46>
L<removing the firmware from fw_update|https://github.com/openbsd/src/commit/3a48df72c0eb61b630f78ada5f42d49c3fc03964>
Took a bit of work to figure out how to remove the old one without a "quirks" entry. The perl package tools use a special "quirks" package to handle these
special cases, like things moving into the base system.

https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/rtwn
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/rtwn
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/urtwn
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/urtwn

History
We still needed a way to have working hardware.

But how?

We still wanted to be able to run OpenBSD on modern hardware.
People need to be allowed to use OpenBSD to build atomic bombs to be dropped on Austrailia or building baby mulching machines.
But even if they maybe get a more limited choice in wifi cards and don't have accelerated video, the rest of us don't need to suffer.

In the beginning there was Nothing
If the firmware license wasn't compatible, the hardware was unsupported.

If the license isn't acceptable, OpenBSD doesn't "use it anyway".
So the hardware just isn't supported and this leads to suffering.

Packaged Firmware
You had to know that your hardware needed firmware, and then install it.

This didn't last long.

https://github.com/openbsd/ports/commit/bbee873c5e9375a679caef0e7c2fcc92705b21a4
The first step was making the firmware more easily available, without putting bad licenses in base.

Wrapper that scanned dmesg
The first fw_update.

Shortly after, for the next UX improvement halex@ added a small wrapper around C<pkg_add> that did a simple update/install detection based on a
hardcoded driver list. It scanned the dmesg to figure out which firmware you need and install it for you.
https://github.com/openbsd/src/commit/3e6d54bfa152b6fb8b908119b1ffa4982b1a01bf
Before my rewrite, it was incorrecly C<fw_update(1)> in section 1.

Perl wrapper
A better experience.

Then espie@ rewrote it in perl in 2015, embedded the logic into the the package system itself and replaced the shell script to provide a better user
experience.
https://github.com/openbsd/src/commit/8205cf658d53e4ab271515bd1c17cba153c85bae
It still scanned a fairly small list of drivers, but the experience improved.
Although most folks never interacted with it directly, and this meant even less of that.
This was the same nice UX as the package tools now.

Initial implementation
Started putting firmware into OpenBSD packages in 2011.

2011 - halex@ wrote a shell wrapper around pkg_add.

2015 - espie@ replaced it with a more tightly integrated perl version.

2022 - afresh1@ replaced it with a shell script.

2036 - ???

As you see, shortly before the end of the 32bit time_t, we're due for another rewrite.

Fixing the experience further
The fix for not having firmware on the first boot is to install the firmware when installing the system.

Things continually get nicer and more polished. So what are we polishing now?
These initial tools ran during L<rc.firsttime(8)>, which meant firmware installed on the first boot of the system.
This led to the issue with having to reboot before X would work.
Since we aren't allowed to include the firmware in the base system, and we need it available on the first boot, we need to install it between installing the
system and rebooting.
Which means doing it from the installer.
Fortunately, the packaging format for OpenBSD packages, which is used by the firmware packages, is fairly simple.

This is harder than it looks
The installer only has limited tools available,

but we can also expect a "single user".

Unfortunately, not quite as simple as just downloading and extracting a tarball.
As you recall, up until this point, the perl package tools were the only thing that actually dealt with /var/db/pkg.
But at least in the installer we don't need to deal with multiuser.
The installer giveth, and the installer taketh away.

The OpenBSD install media
The OpenBSD installer still fits on a floppy disk, and some architectures ship with floppy images.

Having limits makes you think about what you're doing. Reminds you that things have trade-offs.

While the installer is kinda a "live system", it's really just enough to do the install.
Since the installer includes everything necessary to install the system, that generally means that a motivated individual can recover a broken system using
those same tools. There are some things that are mostly there to support recovery.
However, the install media doesn't fit L<perl(1)>, and we can't trust that the installer kernel will run the perl that was just installed. So, we aren't able to
use the perl fw_update, which means we had to reboot onto the running system before we could install the firmware. So annoying.
Choosing not to add complexity where it isn't needed and keeping these limitations is one of the reasons OpenBSD has the best installer of any OS.
On the other side, if you're not careful, you end up with an installer that doesn't work over a serial console.
Or takes more than 10 minutes to install a system.

knobs are for knobs
One of my favorite things about OpenBSD.

OpenBSD ls [-1AaCcdFfgHhikLlmnopqRrSsTtux] [file ...] # FreeBSD ls [-ABCFGHILPRSTUWZabcdfghiklmnopqrstuwxy1,] [--color=when] [-D
format] [file ...] # linux doesn't even list the options in the synopsis they have so many
Side trip
One of my favorite things about OpenBSD, they think about whether a feature outweighs the complexity. Even better, they remove complexity where they
can.
Bluetooth for example, or sudo -> doas, or apache -> httpd.
But lots of things either never become a sysctl, or over time that sysctl gets removed because the system auto-tunes or just one setting was "the best" for
most users.
Making the interface simpler improves the user experience.
Folks run for cover when tedu@ starts looking for code to remove.

OpenBSD's not GNU!
.Bl -enum produces ordinal numbers, not cardinal numbers; patch from Jan Stary Ehans at stare dot czE. We are both confident that the
practical consequences of this documentation bug are limited since you are not supposed to commit manual pages containing infinite
numbers of list items in the first place (remember, OpenBSD's not GNU!) - but correctness is a virtue in documentation nonetheless.
A recent schwarze@ commit implies this attitude of simplicity.
You are not supposed to commit [...] infinte numbers of [...] items [...] but correctness is a virtue.
https://marc.info/?l=openbsd-cvs&m=171623026621515&w=2 https://github.com/openbsd/src/commit/5a50f35104472ad54fdd464b6f5a3220b218a011

Limited tooling
Some things we do have on the install media are OpenBSD's ksh(1), ftp(1) which happens to also be a simple http(s) client, and ed(1).

As well as a few other things.

The OpenBSD installer itself is written using these tools.

Back on track.
Some things that haven't been removed, and are actually part of that install media gives us some impressive capabilities.

https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/ksh
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/ksh
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/ftp
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/ftp
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/ed
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/ed

Enough tooling
At least with a couple of limitations.

One: that none of the firmware would have any dependencies.

Two: there would only be a single version of any firmware available for a release at any time.

This gives us enough features that we are able to implement a very simple package system client. Fortunately, we were able to declare two things that made
this possible.
No dependency handling, and no parsing version numbers.
In practice this means that only one entry per driver in the SHA256.sig file.
If the version doesn't match, install the other one.
And we don't need 99%+ of the complexity of a package manager.
Protip, never write a package manager, the long tail of complexity is fractal.

So what do we have now?
• /usr/sbin/fw_update
• /usr/share/misc/firmware_patterns
• http://firmware.openbsd.org/firmware/${HTTP_FWDIR}/SHA256.sig

And the firmware packages that live there.

Because the actual L<fw_update(8)> is a shell script, which is just a plain text file, we also don't have to include it on the install media, but instead can use
the ksh from the install media to interpret the fw_update script that we installed. That means we don't have to worry as much about the size of the script.
Which means we can use a bit of a nicer style than the very terse style used in the actual install scripts.

Pre-compiled firmware_patterns
The firmware_patterns are generated when building a release(8).

This allows generating patterns for all the graphics cards.

The final thing we did to make this process simple enough to also include /usr/share/misc/firmware_patterns in the base sets. This maps a set of patterns to
match from the L<dmesg(8)> that map to which driver, and therefore which firmware, we should install.
This is generated during build by a C program that knows how to query the drivers and see how they may appear in the dmesg.
Thanks to deraadt@ and rnagy@ for much of that.

https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/release
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/release

ksh(1)
An amazing amount of features, but not too many.

You can actually do bitwise calculations in it, I have written a script to do IPv6 address manipulation in pure ksh.
The firmware_patterns are actually fnmatch globs so that ksh can match them directly without exec'ing an external program and match faster.
Still can't pass around arbitrary strings.
Another limitation, is no networking. (Should a shell really be able to do that?)

ftp(1)
Actually an http(s) client.

Well, at least an C<HTTP GET> over TLS client.
Not the ability to POST over https. That went away when we lost lynx.
I have a helper to use L<nc(1)> with L<HTTP::Tiny(3p)>, but perhaps in perl 5.42 we will have a TLS library shipped with L<perl(1)>.
Although ftp(1) is using pledge(2) and unveil2(), it is still an older codebase that talks to the network. There is an unfinished http(1) client in tree, but the
bugs haven't been worked out. So, we drop privileges when running ftp(1).

su(1) vs doas(1)
In the installer, doas(1) is very limited.

Outside the installer, it has too many features, so we use su(1).

We actually use both to _drop_ privileges, since L<fw_update(8)> runs as root.
L<su(1)> isn't available on the install media.
We can downloaded file as a lower privilege user before handling it as root.
Then we can verify is signed and trusted.

https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/doas
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/doas
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/su
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/su

signify(1) + sha256(1)
Firmware packages are validated using signify(1) to sign a list of sha256(1) checksums in a SHA256.sig file.

Normally we can use C<signify -C>, but that functionality isn't available in the installer.
So we use both tools to make sure the firmware we are going to install matches the checksum that was cryptographically signed before installing.
Public key for base is in the installer, we install the firmware public key in the newly installed system.
This is nearly the same validation that packages use.
Once validated, we can extract the firmware and register it with the pkg db.

https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/signify
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/signify
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/sha256
https://cvs.afresh1.com/~andrew/talks/2024-bsdcan/sha256

ed(1) -- The standard editor
"If you don’t know ed, you’re [...] Deficient."

-- https://mwl.io/tools/ed

One of the most useful things for system recovery in the installer is L<ed(1)>.
But we script it to modify the C<+CONTENTS> of the package.

perl(1)
Well, only when not running in the installer.

When running multi-user, we need to be more careful.
We use perl to lock the package database when there could be multiple processes modifying it.

fw_update(8) in the installer!
We can now install firmware in the installer!

With all that, we are able to run L<fw_update(8)> during install.
We actually run it a lot, just in case:
During install or upgrade, if using L<sysupgrade(8)> we run it before rebooting, after install in L<rc.firsttime(8)>.

X starts on first boot
You no longer need to reboot to get into X.

And with all that, nearly 850 lines of ksh, you no longer have to reboot after install before X will start.
Since OpenBSD 7.1.
The FAQ does have a section on adding extra firmware to the install image, if you need firmware for your wireless card to actually do the install.
https://www.openbsd.org/faq/faq4.html#WifiOnly

Thanks
Andrew Hewus Fresh afresh1@openbsd.org

https://bsd.network/@AFresh1

Artwork by Luc Houweling. I stole it from the 7.1 artwork.

Go buy a shirt: https://openbsdstore.com

And donate: https://openbsd.org

bsd.pizza
https://bsd.pizza

If you come to Portland, OR, hit me up. We do a social meetup every month.

Fossy
https://fossy.us

I'm sure Michael Dexter is going to say more about this, but last year some Linux folks put on a conference They want it to be like OSCon or FOSDEM, lots
of small conferences under a big umbrella. and Dexter coopted one track as the PDX BSDCon. Hopefully he does it again and we can outnumber the GPL
folks.

